If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+44x=0
a = 2; b = 44; c = 0;
Δ = b2-4ac
Δ = 442-4·2·0
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-44}{2*2}=\frac{-88}{4} =-22 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+44}{2*2}=\frac{0}{4} =0 $
| 56+-3x=41 | | x^2-20x+82=-17 | | 9u=10.8 | | 9(p-1)=10(p-4) | | x^2-5x-78=6 | | x^2-5x-78=-6 | | 41-4x=13 | | x^2-5x-78=-15 | | c=1/4c-10 | | 113+-6x=53 | | x^2-17x+57=-15 | | 2^2-17x+57=-15 | | 8−2v=–5v−10 | | 8d+5=5+8d | | 20+5p=60 | | 1/5(3b+5)=28 | | 15(3b+5)=28 | | B+2b+2b+30=250 | | 16a2=9 | | 3^3^x=1/243 | | 32=3r+5r | | -36=X2+12x | | 3b+30=250 | | 35b=250 | | 34=9+5(d+4) | | 20x–60000/x^2=0 | | 9^x+4=27 | | 30+5b=250 | | 2+6n=2(n+9) | | 1/20=n/1000 | | 3^3x=1/243 | | B-1/2b=22 |